# Taxonomic Update of Historic Nori Specimens Using Molecular Methods Marissa Mehlrose and Dr. Amy Carlile Department of Biology and Environmental Science



## Introduction

Nori is the common name for two genera of red algae: *Porphyra* and *Pyropia*. It is the seaweed that is used to make sushi, which is a 1.5 billion dollar industry in the US alone, making these very economically important organisms (Reddy et al. 2010). Recently, *Porphyra* underwent a taxonomic update, and some species were reclassified as *Pyropia* (Sutherland 2011). *Porphyra* and Pyropia species can sometimes have identical morphology, so misidentification is common (Reddy et al. 2010). Also, it is possible that individuals of the same species can look vastly different, again resulting in misidentification (Reddy et al. 2010). Molecular methods can assist in updating Herbaria collections as well as global species distribution

In 2015, an undergraduate student used molecular data to identify four species of *Porphyra* and *Pyropia* (Table 1) that had never before been observed in the Long Island Sound (Nencetty 2015).

Table 1. The historic and new distribution of four non-native *Pyropia* species, as observed by Nencetty in 2015.

| Species             | Native Distribution | New Records        |
|---------------------|---------------------|--------------------|
| Pyropia parva       | Europe              | Connecticut, R.I.  |
| Pyropia tenipedalis | Asia                | Connecticut, Mass. |
| Pyropia pulchella   | Asia                | Connecticut, R.I.  |
| Pyropia yezonesis   | Europe and Asia     | Connecticut, Mass. |

The objectives of this study were to:

- Identify historic distributions of non-native nori to determine when it arrived in the Long Island Sound.
- Revise species designation of Herbaria specimens as needed using molecular methods.

### Materials and Methods

Sixty specimens of *Porphyra* and *Pyropia* species were sampled from the New York Botanical Garden Herbarium (Figure 1). Genomic DNA was then extracted from the samples using a Qiagen DNeasy Plant Mini Kit, modified so the samples were left to lyse overnight. Primers specific to these species of algae were designed, for both the nuclear encoded SSU rRNA and chloroplast encoded *rbcL* (Table 2). These primers were designed to yield short fragments to ensure they would amplify older, potentially degraded samples. Using these primers, Polymerase Chain Reaction (PCR) was then used to amplify the sequences and gel electrophoresis was used to confirm size. PCR products were sent to Yale to be sequenced, and the sequences were compared to known sequences to determine species identification.

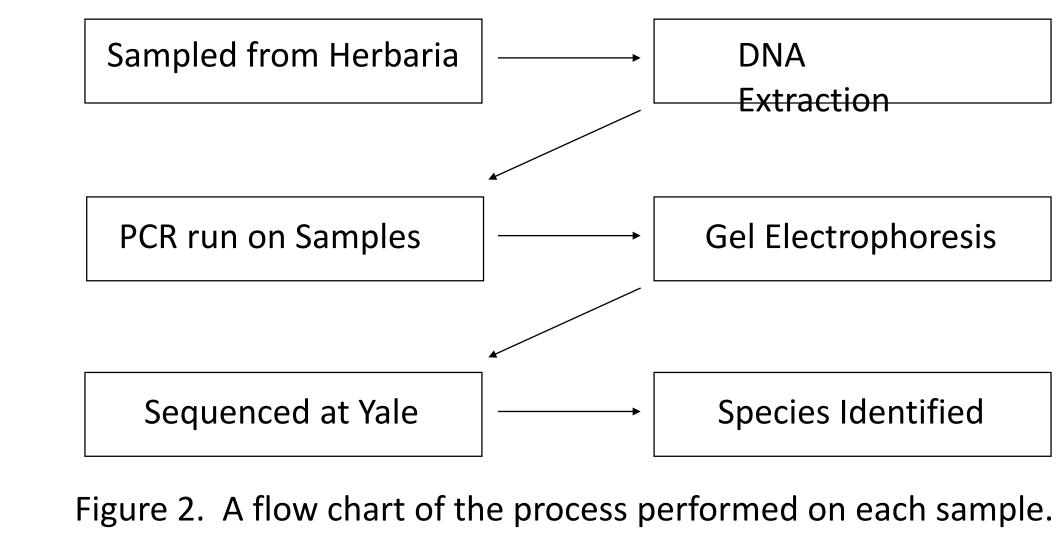





Figure 1. Examples of *Porphyra* herbarium presses of two different species, highlighting their similar morphology (Macroalgal Herbarium Portal).

#### **Results and Discussion**

Of the 60 samples, 40 have been sequenced and 27 were successful in yielding an identification. Out of the 8 primer pairs that were used, three were successful in yielding a positive identification, while only one almost always sequenced fungus or bacteria (Table 2). Three out of the four species new to the Long Island Sound area observed by Nencetty (2015) were identified among these old specimens, and have been here for as long as 135 years (Table 3). Almost none of the identifications on the Herbaria labels were correct, revealing the need for molecular work to be done on older specimens. Many of the species identified were first reported in the New England area in the early 2000's; this study shows that these species have actually been here over a century. The oldest specimen sequenced was one of the species never previously recorded in North America, further justifying the need for molecular identification on cryptic species and the utility of historic herbarium specimens in examining species distributions..

Table 2. The primers used in this study and their rate of success sequencing historic algae. Primer PCW321 was taken from Carlile et al (2010).

| Gene | Primer Pair |         | Length of | Success Rate |
|------|-------------|---------|-----------|--------------|
|      | Forward     | Reverse | Segment   | Success Rate |
| SSU  | 192 FOR     | 350 REV | 158       | 17%          |
| SSU  | 330 FOR     | 517 REV | 187       | 84%          |
| SSU  | 496 FOR     | 668 REV | 172       | 100%         |
| rbcL | 92 FOR      | 240 REV | 148       | 93%          |
| rbcL | 221 FOR     | 417 REV | 196       | 100%         |
| rbcL | 398 FOR     | 546 REV | 148       | 80%          |
| rbcL | 795 FOR     | 951 REV | 156       | 100%         |
| rbcL | PCW321      | 417 REV | 96        | 75%          |



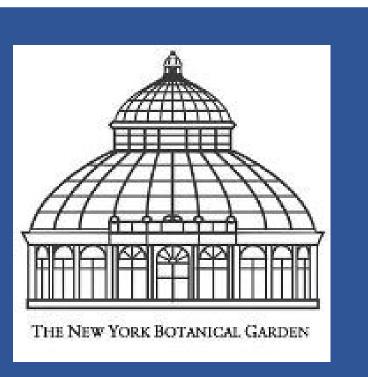
Table 3. Select specimens identified through molecular methods and their distribution. A \* indicates the species was observed in the study by Nencetty in 2015. The distribution lists only the oldest identified specimen in each location. Bold font indicates the oldest specimens recorded in species newly observed in North America.

| Species               | Previously Rec                               | My Study Distribution     |                                                  |
|-----------------------|----------------------------------------------|---------------------------|--------------------------------------------------|
|                       | North America                                | Global                    | My Study Distribution                            |
| Porphyra purpurea     | Alaska and Western<br>Canada<br>Maine (2001) | Europe, Asia              | MA (1884)                                        |
| Pyropia elongata      | South Carolina (1991)<br>Connecticut (2007)  | Europe                    | CT (1886)<br>NY (1902)                           |
| Pyropia parva*        | Never in NA                                  | Spain                     | <b>NY (1882)</b><br>RI (~early 1900s)            |
| Pyropia yezoensis*    | Alaska (1977)<br>New England (2008)          | Asia, Europe              | CT (1999)                                        |
| Porphyra tenipudalis* | Never in NA                                  | Japan                     | NJ (1891)<br>RI (1905)<br>MA (1908)<br>NY (1929) |
| Pyropia koreana*      | New England (2007)                           | Korea, Europe             | NY (1901)                                        |
| Porphyra umbicalis    | Maine (2001)                                 | Europe, Asia, Africa, S.A | ME (1900)                                        |
| Porphyra leucosticta  | Maine (1957)                                 | Europe, Asia, Africa, S.A | ME (1904)                                        |

### Conclusion and Future Work

#### Conclusions

- Herbaria are very important in updating species distribution patterns.
- Numerous *Porphyra* and *Pyropia* species have been in this area since 1882, but since they are all morphologically similar they have been misidentified for years.
- Seven of the eight primers designed were very successful in identifying historic specimens. Future Work
- Continuation of this project should include sequencing the remaining 20 samples collected from the NYBG.
- All *Porphyra* and *Pyropia* specimens at the New York Botanical Gardens should be taxonomically updated using molecular methods.
- Further species and Herbaria should be updated using molecular methods to ensure correct species identification and species distribution.


Rhodophyta). Phycologica 49(4):336-344.

Available from http://macroalgae.org/portal/collections/list.php Nencetty, K. 2015. Taxonomic Characterization of New England Nori. University of New Haven Thesis. Reddy CRK, Gupta V, Jha B. 2010. Developments in biotechnology of red algae. In: Seckbach J, Chapman DJ, editors. Red

Springer. p 305-339

### Acknowledgements

Thank you to the University of New Haven SURF program for giving me this research opportunity. I would also like to thank the New York Botanical Garden for allowing me to sample from their herbaria specimens. I would finally like to thank Dr. Carlile for all her knowledge and assistance helping me complete this project.



#### References

- Carlile AL, Cho TO, Waaland JR. 2010. The conspecifity of Ceramium pacificum and Ceramium washingtoniense (Ceramiacae,
- Macroalgal Herbarium Portal. [Internet] 2017. The New York Botanical Garden. [Cited July 27,2017].

  - algae in the genomic age (Cellular origin, Life in extreme habitats and astrobioloy). Vol 13. 1st ed. Netherlands:
- Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Hwang MS, Choi H, Miyata M, Kikuchi N, Oliveira MC and others. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol. 47: 1131-1151.