

Introduction

Spiromastixone J

- Depsidone natural product similar to Diploicin, isolated from deep-sea Spiromastix sp. fungus collected at 2,869 meter depth by autonomous remotely-operated vehicle¹
- Isolated in 0.022% yield after three consecutive column chromatography separations performed on 58.4 g of extract after 50 days of fermentation¹
- Exhibits single digit micromolar IC_{50} s towards multi-drug resistant Gram-Positive Bacteria such as MRSA¹

<u>Table 1: Reported IC₅₀s of Spiromastixone J</u>

Bacterial Strain		Resistance Phenotype	IC50 (μM)		
			Mastixone J	Levoflo	
S. aureus	ATCC 33591	MRSA	2	0.2	
	15	MSSA	2	0.12	
	12-28	MSSA	4	0.2	
	12-33	MRSA	4	64	

Retrosynthetic Analysis²

The above retrosynthetic analysis shows the heavy reliance on a large presence of Key Intermediate 1 (resorcilate).

Studies Toward the Total Synthesis of Spiromastixone J

Brandon Miller and Dr. Pier Cirillo

University of New Haven: Department of Chemistry and Chemical Engineering

Experimental Results										
Scheme 1: Consecutive Claisen Condensations on Dioxinone ³										
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \\ \end{array}{} \\ \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \\ \\ \end{array}{} \\ \end{array}{} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$										
produce a sufficient amount of Key Intermediate 1.										
Scheme 2: Diels-Alder Cycloaddition ^{4,5} $\downarrow \downarrow $										
	R ¹ Group	R ² Group	Ra Diene	ntio Dienophile	Solvent	Catalyst	Temperature	Result		
	Methyl	TBDMS	1	1	None	None	RT	No Reaction		
	Methyl	TBDMS	1	2	None	None	RT	No Reaction		
	Methyl	TBDMS	2	1	None	None	RT	No Reaction		
	Methyl	TBDMS	2	1	None	None	0 C	No Reaction		
	Methyl	TBDMS	1	2	Toluene	None	80 C	No Reaction		
	Methyl	TBDMS	1	1	None		0 C	No Reaction		
	Methyl		1	1	None Diathyl Ethar			No Reaction		
	Methyl	TROMS	1	 1	Diethyl Ether		кі 60 С	No Reaction		
	Methyl	TBDMS	1	1	Water		RT	No Reaction		
	Propyl	TBDMS	1	1	None	None	RT	No Reaction		
	Propyl	TBDMS	1	1	None	None	150 C	No Reaction		
	Methyl	TMS	1	1	None	None	RT	No Reaction		
Extensive diene decomposition was typically observed. Conclusion: After extensive experimentation, the Diels-Alder approach to Key Intermediate 1 was abandoned.										
Scheme 3: Robinson Annulation/Elimination ^{6,7}										
$\frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$										
Co	onclusio	on: Th	is seau	ence ar	opears to	be the	most pr	omising		
an	nroach	to aco	llire or	am-eco	le quant	ities of	Kev Int	ermediate		
1 The good stop of Coheme 2 is still low visible and										
1.	i ne se	cond s	tep of S	Scheme	e 3 18 stil	I IOW Y	ielding a	ina		
pro	oduces	a wide	e variet	ty of sid	de produ	cts. We	e are curi	rently		
res	searchi	ng the	best m	ethod t	o optimi	ze this	reaction			
		-			-					

cheaper methyl version (ethyl crotonate). 2. Completion of Spiromastixone J synthesis. Scheme 4: Ortho Lithiation⁸

below.⁸

- 77 (4), 1021–1030.
- 4913.
- Kumar, A. Chem. Rev. 2001, 101 (1), 1-19.
- 431-434.
- 1946.

Acknowledgements

This research was funded in part by the Summer Undergraduate Research Fellowship. Thank you to the University of New Haven Chemistry Department for their continued support. Thank you to Yale West Campus for the use of their instrumentation. A huge thank you to Dr. Cirillo for all of the support and mentorship you have given me.

Future Work

Optimization of sequence in Scheme 3. We are currently optimizing the reaction conditions on the shortened and

Should sequence in Scheme 3 not provide sufficient amounts of desired Key Intermediate 1, an alternative pathway we have considered but not yet explored is the ortho-lithiation of the resorcilate seen in the Scheme 4

$CI, -90^{\circ}C$ $H_2, Pd-C$

References

Niu, S.; Liu, D.; Hu, X.; Proksch, P.; Shao, Z.; Lin, W. J. Nat. Prod. 2014,

Sala, T.; Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1981, 855–869. Calo, F.; Richardson, J.; Barrett, A.G.M. Org. Lett. 2009, 11(21): 4910-

Grieco, P.; Nunes, J.; Gaul, M.; J. Am. Chem. Soc. 1990, 112, 4595-4596. Dyke, H.; Elix, J.; Marcuccio, S.; Whitton, A. Aust. J. Chem. 1987, 40,

Marmor, R. J. Org. Chem. 1972, 37 (18), 2901-2904. Mikula, H; Hametner, C.; Froehlich, J. Synth. Commun. 2013, 43, 1939-