

Research Goal

Identify science, math and technology concepts integrated into engineering problem-based activities.

Practical Challenges

Engineering problems require the application of knowledge and skills from different subject areas.

Students are challenged to apply their knowledge beyond classroom tasks, even within a single subject area.

Methods

Design-based research Expert teacher surveys

References

Honey, M., Pearson, G., & Schweingruber, H. (2014).

Increasing STEM Understanding and Engagement Through Engineering Learning Activities

By: Reah Thomas-Hill Advisors: Dr. Kristine Horvat, Dr. Judy Randi

Research and Development

Phase 1: Selecting, adapting, and creating lessons (Prototyping) Phase 2: Eliciting input and modifying/ enhancing lessons Phase 3: Piloting (Testing the lessons)

Lesson Prototype

Minds On

Activate prior knowledge of relevant concepts and vocabulary.

Hands On

students Engage exploration and problem-solving tasks assigned by Charlie the Charger.

Thoughts Out

Debrief concepts applied in solving the problem and extend to other applications and engineering work.

- hands-on in

Concepts, Disciplines, & Applications

Charlie Needs a Boat!

- Physics, math

Acknowledgements

I would like to thank my mentors for encouraging me to apply for the program this summer and the SURF staff for allowing me to participate in this experience.

• Formulas, expressions, equations

Mechanical engineering

Charlie Needs a Table! • Force, math practices – problem solving, quantitative reasoning

• Physics, algebra, geometry • Civil, structural engineering